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1 Introduction

Noncommutative gauge theories are known to arise as low energy limits of (super)string

theory [1, 2], and they are interesting on their own as examples of nonlocal theories. One

of their intriguing features is that noncommutative U(N) gauge theories, considered as

effective descriptions of the dynamics of D-branes with Neveu-Schwarz backgrounds, are

known to have a dual description in terms of fields with ordinary gauge invariance [1]. This

equivalence, which can be traced back to the possibility of choosing different yet equivalent

regularisations of the D-Brane effective action, can be formulated by means of a map which

relates noncommutative and ordinary gauge fields in a way consistent with their respective

gauge symmetries, so that orbits of noncommutative gauge transformations are mapped

into orbits of ordinary gauge transformations. These maps are called Seiberg-Witten maps.

Their role linking different DBI actions has also been shown to hold, at least to a certain

approximation, in the N = 1 supersymmetric case [3]. In principle, this equivalence holds

for the D-Brane effective actions, but one may wonder whether it also holds, at the quantum
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level, for the noncommutative gauge theories that do not involve the higher order terms

present in the DBI actions.

The idea of mapping noncommutative to ordinary gauge symmetries was the starting

point for the formulation of noncommutative gauge theories for arbitrary gauge groups by

means of Seiberg-Witten maps pioneered in refs. [4–6]. In the “standard” formalism, closure

under gauge transformations restricts the gauge groups to be U(N) and the representations

to be (anti-)fundamental or bi-(anti)-fundamental, while the formalism which makes use of

Seiberg-Witten maps, also referred to as the enveloping algebra formalism, makes it possible

to consider arbitrary gauge groups and representations by mapping the enveloping-algebra

valued noncommutative gauge fields to ordinary Lie-algebra valued gauge fields.

The quantum properties of noncommutative gauge theories, both in the standard and

enveloping algebra approaches, have been analysed in many works. Concerning the stan-

dard approach, nonsupersymmetric noncommutative U(N) Yang-Mills theories are plagued

by pathological IR divergences coming from the UV/IR mixing effect [7], which are sup-

pressed in the large N limit, in which only planar diagrams contribute and the sole effect of

noncommutativity is producing phase factors depending on the external momenta which

can be taken out of the loop integrals. Noncommutative supersymmetric gauge theories [8]

exhibit a better behaviour in the infrared, as the problematic divergences are milder or

altogether absent [9–11]. These milder noncommutative IR divergences are logarithmic

and can be integrated leading to a consistent renormalisable supersymmetric noncommu-

tative Wess-Zumino [12] and most likely to consistent renormalisable, or even UV finite,

supersymmetric noncommutative U(N) theories [13, 14]. A noncommutative extension of

the MSSM has been put forward in ref. [15], which contains more “particle” states than

the ordinary MSSM due to the noncommutative anomaly cancellation conditions [16, 17]

and other noncommutative requirements.

On the other hand, concerning the theories defined by means of Seiberg-Witten maps,

they are known to have gauge anomaly cancellation conditions identical to their commu-

tative counterparts [18], and their renormalisability properties have been studied in a wide

number of papers [19–27]. The results can be summarised as follows: pure gauge theories,

U(1) or SU(N), are one-loop renormalisable at least to first order in the noncommutativity

parameters. The introduction of matter fields in the form of Dirac fermions or complex

scalars in arbitrary representations (but such that the matter Lagrangian in terms of non-

commutative fields does not involve a covariant derivative with a star-product commuta-

tor), does not spoil the renormalisability of the gauge sector of the theory; however, the

full theory seems to be nonrenormalisable in all cases analysed. These cases for which the

renormalisability of the matter sector has been addressed are: Dirac fermions with gauge

groups U(1) [20, 21] or SU(2) in the fundamental representation [22], and U(1) complex

scalars [25]. Renormalisability is spoilt by the appearance of divergences in matter field

Green functions which cannot be removed by multiplicative renormalisations or field redef-

initions. There is still no definitive answer concerning whether other types of matter fields

or representations could overcome this problem, despite promising results concerning chi-

ral fermions [27]. Still, the renormalisability properties of theories with Majorana fermions

or/and covariant derivatives involving a star-product commutator have not been studied.
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Moreover, supersymmetry could be expected to make some divergences go away. However,

though generally supersymmetry is associated with a cancellation of divergences between

bosonic and fermionic degrees of freedom, and noncommutative U(N) theories defined by

means of Seiberg-Witten maps have been shown to be compatible with supersymmetry, it

turns out that the latter is realised nonlinearly in the ordinary fields [3], and thus it is not

clear how it will affect divergences.

Comparing the quantum properties of noncommutative theories in both the standard

and enveloping algebra approaches raises interesting questions regarding their equivalence

for U(N) gauge groups, for which the Seiberg-Witten map establishes a classical equiva-

lence. The different gauge anomaly cancellation conditions makes this equivalence doubtful

in the presence of chiral fermions, at least when noncommutativity is treated perturbatively.

In the case of theories without matter, the equivalence has been found to hold for non-

commutative Chern-Simons [28] –a theory which is UV finite–, whereas for other gauge

theories with or without matter there is no concluding evidence, since on the side of the

enveloping algebra approach the theories studied have exclusively U(1) and SU(N) gauge

groups, while to make contact with the standard formalism one should consider U(N) in

the large N limit, in which the theories, at least at the one-loop level, are supposed to be

well behaved and renormalisable for infinitesimal noncommutativity.

We have so far identified several issues that need further investigation, and, indeed,

there are two goals that one can achieve by studying the renormalisabilityof the N = 1

super Yang-Mills θ-expanded theory. On one hand, the study of the renormalisability prop-

erties, both for the gauge sector and the full theory, of noncommutative theories defined

by means of Seiberg-Witten maps (i.e., theories defined within the enveloping-algebra for-

malism of refs. [4–6]) with Majorana fermions and/or involving a covariant derivative with

star-product commutators and/or supersymmetry. This study is much needed since, within

the enveloping-algebra formalism, the inclusion of fermions in noncommutative SU(N) the-

ories in a nonsupersymmetric way leads to nonrenormalisable theories: the fermionic part

of nonsuperymmetric noncommutative SU(N) is nonrenormalisable –see ref. [22]. On the

other hand, to check in a highly-nontrivial setting the equivalence at the quantum level

of the standard and enveloping algebra (θ-expanded) approaches for supersymmetric non-

commutative U(N) gauge theories in the large N limit,i.e., the quantum duality of super-

symmetric noncommutative U(N) formulated in terms of noncommutative fields and the

supersymmetric theory, whose fields are ordinary gauge fields carrying a nonlinear reali-

sation of supersymmetry, obtained from the former by using the Seiberg-Witten map. In

this regard, it should be stressed that the Seiberg-Witten map is not a field redefinition of

the ordinary field –it maps ordinary gauge orbits to noncommutative gauge orbits– and,

hence, it is far from clear that renormalisabilityof the planar sector of the standard noncom-

mutative supersymmetric U(N) theory implies renormalisability of the large-N part of its

classical ordinary dual under the Seiberg-Witten map. Besides, the Seiberg-Witten map is

defined by products of fields at the same point and renormalisation of the Green functions of

elementary fields does not imply renormalisation of Green functions of composite operators.

It is plain that the final and more ambitious goal regarding the perturbative renor-

malisability of the planar (and SU(N)) sector of the theta-expanded U(N) SYM theory
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would be to prove renormalisability at any order in θµν and the number of loops. Here

perturbative renormalisability is understood in the physical sense that once the coupling

constants and mass parameters that occur in the classical action –these coupling constants

and mass parameters being a finite set– have been renormalized, the so remaining (if any)

UV divergences can be accounted for by field redefinitions which are parametrised by an

infinite number of UV divergent parameters, which constitute the physically irrelevant part

of the Seiberg-Witten map. This all-order perturbative renormalisability proof seems to

be technically out of reach at the moment and to carry it out will require a great deal of

ingenuity –though some partial all-order-in-theta proofs have been given in refs. [19, 26]–,

in this regard some improvement of the techniques introduced in ref. [29] may be of help.

This all-order renormalisability proof is a preliminary requirement to fully establish quan-

tum Seiberg-Witten map duality, on the one hand, and, to fully make sense out of any

noncommutative field theory formulated within the enveloping algebra formalism. How-

ever, as it has happened in the past in the history of quantum field theory, in the absence

of general proofs explicit one-loop computations at first order in θµν are always welcome

since they may serve as a guidance on how to achieve the ultimate goal and to reveal

whether some properties such as supersymmetry maybe useful to attain that goal –U(N)

YM theory in the large-N limit in the case at hand–. Besides, these computations show in

which cases the ultimate goal cannot be accomplished–for finite N, the U(N) YM theory

in the case analysed here–. All in all, a full perturbative proof of the renormalizability of

the kind of θ-expanded theories studied in this paper requires far more work and a better

understanding of both the technical issues and formal ideas involved in their formulation.

The aim of this paper is to take the first steps in the study of the two open issues

mentioned above by analysing the renormalisability properties of N = 1 U(N) super Yang-

Mills in the enveloping algebra approach, with the ordinary fields taking values in the

fundamental representation of the gauge group. First, the theory has a Majorana fermion

with a covariant derivative involving a star-product commutator; supersymmetry is also

present for the noncommutative fields, and it is inherited by the ordinary fields albeit

in a nonlinear fashion. Secondly, since we have a U(N) gauge group in the fundamental

representation, the theory can also be formulated in the standard approach, in which case,

in the large N limit, it is renormalisable and well-behaved for small noncommutativity. We

will analyse whether one-loop renormalisability in the background field gauge is achieved at

least for large N. Further, in order to complement previous research regarding theories with

simple gauge groups, we will study the renormalisability properties of the SU(N) model

that results from eliminating the U(1) degrees of freedom in the U(N) theory, with the

goal of seeing whether the modified field content and interactions yield a better behaviour

at the quantum level. To tackle these problems, we will compute the divergent part of

the one-loop effective action at first order in the noncommutative parameters θµν , using

the background field method in the background field gauge and dimensional regularisation,

and we will study whether the divergences can be removed by appropriate multiplicative

renormalisations of the parameters of the theory plus nonmultiplicative field redefinitions.

The paper is organised as follows. The model and the background field method are

introduced in section 2. Section 3 is devoted to the computation of the full divergent part
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of the one-loop effective action: first, a method is outlined which allows to obtain the

full result by calculating a minimum number of diagrams, whose divergent parts are then

computed in dimensional regularisation; following this the full gauge invariant expression is

finally reconstructed. The renormalisability of the theory, both for arbitrary finite and large

N, is studied in section 4, and then conclusions are drawn in section 5. Two appendices

are included, the first one with some Lie and Dirac algebra identities, and the second one

displaying the Feynman rules employed in the computation.

2 The model and the background field method

The action of the model, in terms of noncommutative fields, is the following,

S =

∫

d4x− 1

2g2
TrFµν ⋆ F

µν +
i

g2
TrΛ̄ /D⋆Λ,

Fµν = ∂µAν − ∂νAµ − i[Aµ, Aν ]⋆, D⋆,µ = ∂µ − i[Aµ, ]⋆, (2.1)

where the fields take values in the enveloping algebra of U(N), Aµ = AA
µ T

A, Λ = ΛATA

and Λ is a Majorana spinor (see appendix A for conventions). The U(N) fields will be

taken in the fundamental representation. The noncommutative product ⋆ is the usual

Moyal product,

a ⋆ b = a exp

[

ih

2
θµν←−∂ µ

−→
∂ ν

]

b,

with h setting the noncommutative scale. The model has N = 1 supersymmetry in terms

of the noncommutative fields; it can be formulated in terms of a noncommutative vector

superfield in the Wess-Zumino gauge.

The noncomutative fields are defined in terms of U(N) Lie algebra valued ordinary

fields, which we denote by aµ, l, by means of the following Seiberg-Witten maps,

Aµ = aµ −
h

4
θαβ{aα, ∂βaµ + fβµ}+ hSµ +O(h2),

Λ = l− h

4
θαβ{aα, 2Dβ l + i[aβ , l]}+ hL +O(h2), (2.2)

where Dµ = ∂µ− i[aµ, ], fµν = ∂µaν −∂νaµ− i[aµ, aν ], and Sµ, L represent the ambiguities

in the map at order h, given by sums of terms which involve a contraction with θµν , have

the appropriate mass dimensions and transform in the adjoint representation of the gauge

group; they can be argued to be equivalent to field redefinitions, as will be seen in section 4.

We will work with the following decomposition of the U(N) fields in the fundamental

representation into their SU(N) and U(1) parts:

aµ = aa
µT

a + bµ
1√
2N

, fµν = fa
µνT

a + gµν
1√
2N

,

l = λaT a + u
1√
2N

. (2.3)
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This will allow us to study the properties of both the U(N) theory and the SU(N) theory

that results from suppressing the U(1) degrees of freedom bµ, u.

We will argue in the next section that, for the purpose of checking renormalisability,

it suffices to compute the divergent part of the effective action ignoring at tree-level the

ambiguities Sµ,L of the Seiberg-Witten maps in eq. (2.2); the ambiguities, however, have

to be taken into account when considering the allowed counterterms. The action in terms

of ordinary fields, after expanding (2.1) with eqs. (2.2) with Sµ = L = 0, turns out to be

the following

S =S(0) + hS(1) +O(h2),

S(0) =− 1

2g2

∫

d4xTrfµνf
µν +

i

g2

∫

d4xTr̄l /Dl, (2.4)

S(1) =
1

4g2

∫

d4xTrθαβfµνf
µν fαβ − 1

g2

∫

d4xTrθαβfαµfβνf
αβ − i

4

∫

d4xTrθαβ l̄γµ{Dµl, fαβ}

− i

2

∫

d4xTrθαβ l̄γµ{Dβ l, fµα}.

In the previous action, all the noncommutative terms involve traces of the type

TrTA{TB , TC} = 1
2d

ABC (see appendix A). For N < 3, the SU(N) part of the Lie al-

gebra, for arbitrary representations, has dabc = 0, which means that the SU(N) theory

obtained by eliminating the U(1) degrees of freedom is, to order h, equivalent to its com-

mutative limit. Therefore, when studying the SU(N) theory we will only consider N ≥ 3.

As shown in ref. [3] (see also [30]) the fields in the action in eq.(2.4) carry a nonlinear

realisation of N = 1 supersymmetry which define supersymmetry transformations that

leave that action invariant.

In the enveloping algebra approach, quantisation is performed on the ordinary fields.

In order to compute the effective action with the background field method [31], we split

the gauge field aµ in a background part bµ and a quantum part qµ,

aµ = bµ + qµ. (2.5)

A gauge transformation of aµ, δaµ = Dµc, can be generated by two types of transformations

of the fields b, q:

Quantum gauge transformations: δqµ = D[q]µc, δbµ = −i[bµ, c], D[q]µ = ∂µ − i[qµ, ],

(2.6)

Background gauge transformations: δqµ = −i[qµ, c], δbµ = D[b]µc, D[b]µ = ∂µ − i[bµ, ].

(2.7)

In order to quantise q with the path integral formalism, a gauge fixing procedure is needed

for the transformations in eq. (2.6). The background field method relies in a clever choice

of the gauge-fixing function which is covariant under the transformations (2.7). With the

gauge-fixing choice G = D
[b]
µ qµ = 0, the gauge-fixing and ghost action are the following

Sgf = − 1

2α

∫

d4x (D[b]
µ q

µ)2, Sgh =

∫

d4x c̄D[b]
µ D

[b+q]µc. (2.8)

– 6 –
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Quantising the fields qµ, l, l̄, the generating functional of the background Green functions

is given by

Z̃[J̃ , σ̃, ˜̄σ; b] =

∫

[dq][dl][d̄l] exp[i(S[b+ q, l, l̄] + Sgf [q; b] + Sgh[c, c̄, q; b] + J̃µq
µ + σ̃l + l̄˜̄σ)],

(2.9)

where J̃ , σ̃, ˜̄σ are sources for the gauge field and Majorana fermions. Note the use of “̃” to

distinguish the background currents and functional generator Z̃ from the ones defining the

true Green functions of the theory, when the splitting of eq. (2.5) is not used and functional

integration is performed over a. The generator of connected background Green functions

is given by

W̃ [J̃ , σ̃, ˜̄σ; b] = −ilnZ̃[J̃ , σ̃, ˜̄σ; b].

Defining the background classical fields as

q̃ =
δW̃

δJ̃
, l̃ =

δW̃

δσ̃
, ˜̄l = −δW̃

δ ˜̄σ
,

then by performing a Legendre transformation we get the functional Γ̃ which generates the

1PI connected background Green functions:

Γ̃[q̃, l̃,˜̄l; b] = W̃ [J, σ̃, ˜̄σ; b]−
∫

d4x J̃µq̃
µ −

∫

d4x σ̃l̃−
∫

d4x˜̄l˜̄σ. (2.10)

In a similar fashion, without using the splitting of eq. (2.5), one can define the true Green

function generators Z[J, σ, σ̄] and W [J, σ, σ̄] as well as the true classical fields â, l̂,ˆ̄l. Stan-

dard formal manipulations show that the effective action of the theory Γ[â, l̂,ˆ̄l] is related

to Γ̃[q̃, l̃,˜̄l; b] of eq. (2.10) by the following identity [31]:

Γ[â, l̂,ˆ̄l] = Γ̃[0, l̃,˜̄l; b]|
b=â,̃l=l̂,̃̄l=ˆ̄

l
, (2.11)

where Γ is computed with an unusual gauge-fixing. From the r.h.s. of eq. (2.11) it is clear

that the effective action is obtained by calculating the background effective action for the

Majorana fields after integrating out the quantum fields q, with the background fields bµ
taken as external sources. We thus can write

Γ[â, l̂,ˆ̄l] =

∫

d4x
∑

k

−i
2k(k!)2

Γ̃[â]
(k)

i1, .., ik, j1, .., jk,

A1, .., Ak, B1, ..,Bk

k
∏

l=1

ˆ̄lAl

il

k
∏

p=1

l̂
Bp

jp
,

where the factor (k!2) takes into account the permutations of the l′s and l̄′s, while the factor

2k comes from the fact that, since the Majorana fermions are self-conjugate, it is always

possible to interchange one l with an l̄. Γ̃[â](k) is nothing but the sum of background 1PI

diagrams with k fermionic legs, k anti-fermionic legs and no quantum gauge field legs, and

with the background field b renamed as â. Expanding Γ̃[â](k) in the number of background

gauge fields, one gets

Γ[â, l̂,ˆ̄l] =

∫

d4x
∑

k

∑

n

−i
2k(k!)2

Γ̃
(n,k)

i1, .., ik, j1, .., jk, µ1, .., µn

A1, ..,Ak, B1, .., Bk C1, ..,Cn

k
∏

l=1

ˆ̄lAl

il

k
∏

p=1

l̂
Bp

jp

n
∏

m=1

âCm
µm
. (2.12)

– 7 –



J
H
E
P
1
1
(
2
0
0
9
)
0
9
2

In the previous formula Γ̃(n,k) is equivalent to a background 1PI diagram with n background

gauge field legs, k fermionic legs and k anti-fermionic legs. Note that our definitions do not

involve any symmetrisation over the background gauge fields. Symmetrising over them we

can make contact with the usual expansion of the effective action in terms of 1PI Green

functions:

Γ[â, l̂,ˆ̄l] =

∫

d4x
∑

k

∑

n

−i
n!2k(k!)2

Γ
(n,k)

i1, .., ik, j1, .., jk, µ1, .., µn

A1, .., Ak, B1, ..,Bk C1, ..,Cn

k
∏

l=1

ˆ̄lAl

il

k
∏

p=1

l̂
Bp

jp

n
∏

m=1

âCm
µm
,

where Γ(n,k), which is obtained from Γ̃(n,k) by summing over the permutations of the

background gauge fields, is the 1PI Green function with n gauge fields and k fermion pairs.

The advantage of using background diagrams coming from the functional generator

in eq. (2.9) is that Γ̃[0, l̃,˜̄l; b] is gauge invariant, so that the effective action Γ[â, l̂,ˆ̄l] is

indeed gauge invariant. As explained in the next section, this can be used to simplify the

computation of the divergent part of the effective action.

3 Computation of the divergent part of the effective action

The aim of this section is to compute the divergent part of the effective action at first

order in hθ, by calculating the background 1PI diagrams Γ̃(n,k) with no external quantum

gauge fields of eq. (2.12) using the Feynman rules associated with the functional generator

in eq. (2.9). These rules can be derived from the expressions for the action, gauge fixing

and ghost terms given in eqs. (2.4), (2.8), keeping in mind the splitting (2.5).

Before plunging into the computation, we will justify a number of simplifications that

do not imply a loss of generality on the final result concerning the regularisation and

renormalisation of the theory.

• We shall carry out our computations in dimensional regularisation with D = 4−2ǫ –it

is always advisable to keep an eye on dimensional reduction. That this regularisation

does not preserve supersymmetry will have no bearing on our conclusions since our

computations are one-loop and the inclusion of the ǫ-scalars of dimensional reduction

to turn our dimensionally regularised theory into a theory regularised by dimensional

reduction –and thus supersymmetric– will not modify the value of UV divergences

that we will compute, but will add new ones which would be subtracted by introducing

counterterms made out of “evanescent” operators and couplings –see ref. [32, 33] for

further details.

• Choice of gauge α = 1 in the gauge-fixing term in eq.(2.8). This choice of gauge

simplifies the gauge field propagator. This brings up the question of whether, if

problematic divergences appear for α = 1 that make the theory nonrenormalisable,

the consideration of an arbitrary α might help remove these divergences. The answer

is negative whenever any of the problematic divergences appearing at α = 1 do not

go away on the mass shell. This is due to the results in ref. [34] (see also [35]) which

establish that the background field effective action is independent of the gauge-fixing
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term if the background fields are on shell. Thus, when the background fields are on

shell any divergent contribution remaining will be independent of any gauge-fixing

term that we chose.

• Setting to zero the tree-level ambiguities Sµ,L of the Seiberg-Witten map of eq. (2.2).

This choice simplifies greatly the computation of the diagrams, though when studying

renormalisability one can still contemplate infinite renormalisations of Sµ,L, which

tantamounts to consider the most general field redefinitions that cannot be reab-

sorbed by gauge transformations, as will be explained in section 4. Again, one may

still object that considering arbitrary Sµ,L at tree level might be of use to cancel

possible pathological divergences (i.e., that cannot be removed by field redefinitions

or multiplicative renormalisation) appearing for Stree
µ = Ltree = 0. This possibility is

precluded by the arguments presented in ref. [36], proven there for a specific model

but expected to have general validity. In this reference the authors claim that, given

a theory which is multiplicatively renormalisable, then by quantising the theory after

performing a field redefinition, the divergences in terms of the new fields can be reab-

sorbed by the same multiplicative renormalisations of physical parameters as in the

original case, plus infinite field redefinitions. In our case, we worry about possible di-

vergences at order hθ for Stree
µ = Ltree = 0 which cannot be removed by infinite field

redefinitions. The theory at order h0 is known to be multiplicatively renormalisable,

and considering arbitrary Stree
µ ,Ltree is equivalent to performing finite field redef-

initions of order h on the ordinary fields aµ, l, l̄. Thus, the additional divergences

dependent on Stree
µ ,Ltree that might appear would be equivalent to infinite field re-

definitions and therefore by assumption would not be useful to cancel the original

problematic divergences at Stree
µ = Ltree = 0. It follows that the conclusions about the

renormalisability of the theory obtained for Stree
µ = Ltree = 0 have a general validity.

• Computing a minimum number of diagrams. The use of the background field

method guarantees that the result for the effective action will be gauge invariant.

Furthermore, its divergent part computed in dimensional regularisation will be local.

Thus, if one chooses a basis of all possible local gauge invariant terms up to order

h, the divergent part of the effective action will be a linear combination of these

terms. The coefficients in this linear combination can be determined by identifying

its contributions with any given number and types of fields with the poles in the

dimensional regularisation parameter ǫ of the corresponding 1PI Green functions

with the same number and types of external fields. By appropriately choosing the

basis, it can be guaranteed that the contributions to its elements with a minimum

number of fields are also independent of each other, so that the unknown coefficients

in the expansion of the divergent part of the effective action in terms of the basis

can be determined from the diagrams with lowest number of fields.

We have thus argued that we can determine unambiguously the renormalisability of the

theory by computing the effective action for α = 1, Stree
µ = Ltree = 0. Under these assump-

tions, the Feynman rules relevant to our computations are those given in appendix B; they

– 9 –
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use a compact notation for the Lie algebra indices, following ref. [37, 38], in which the U(N)

field expansion in the Lie algebra generators in the fundamental representation is taken as

aµ = aµ
ATA,

where TA = {T 0, T a}, with T 0 = 1√
2N

the U(1) generator and T a denoting the SU(N)

generators; more details are given in appendix A. This allows to compute simultaneously

diagrams involving both SU(N) and U(1) fields, and the results for the SU(N) theory can

also be easily obtained by setting the external “A” indices to SU(N) indices “a”, and by

taking care to drop the contributions of U(1) indices in terms involving contractions of

internal U(N) Lie algebra indices “A”.

Let us start by identifying the diagrams that need to be computed by constructing

the appropriate basis of local gauge invariant terms whose integrals are independent. We

use the decomposition in eq. (2.3). Local gauge invariant terms are then constructed from

traced products of the field strengths and fermion fields and their covariant derivatives; we

can classify them in three sectors: SU(N) sector -only including fields in the Lie algebra

of SU(N)- U(1) sector, and mixed sector. A list follows:

• SU(N) sector:

t1 = θαβTrfαβfµνf
µν , t2 = θαβTrfαµfβνf

µν ,

t3 = θαβTrλ̄γαD
2Dβλ, t4 = θαβTrλ̄γαβ

µD2Dµλ,

t5 = θαβTrλ̄γµ{fµβ ,Dαλ}, t6 = θαβTrλ̄γµ{fαβ ,Dµλ},
t7 = θαβTrλ̄γα{fβµ,D

µλ}, t8 = θαβTrλ̄γαβ
µ{Dνfµν , λ}, (3.1)

t9 = θαβTrλ̄γα
ρσ{Dβfρσ, λ}, t10 = θαβTrλ̄γµ[Dµfαβ, λ],

t11 = θαβTrλ̄γα[Dµfβµ, λ], t12 = θαβTrλ̄γαβ
µ[fµν ,D

νλ],

t13 = θαβTrλ̄γα
ρσ[fρσ,Dβλ], t14 = θαβTrλ̄γα

ρσ[fβσ,Dρλ],

t15 = θαβTrλ̄i(γα)ij[{λ̄k,(γβλ)k}, λj ], t16 = θαβTrλ̄i(γ
µ)ij [[λ̄k,(γµαβλ)k],λj ].

• U(1) sector:

u1 = θαβgαβg
µνgµν , u2 = θαβgαµgβνg

µν , u3 = θαβūγα∂
2∂βu,

u4 = θαβūγαβ
µ∂2∂µu, u5 = θαβūγµ∂αugµβ , u6 = θαβūγµ∂µugαβ , (3.2)

u7 = θαβūγα∂
µugβµ, u8 = θαβūγαβ

µu∂νgµν , u9 = θαβūγα
ρσu∂βgρσ.

• Mixed sector:

v1 = θαβTrgαβf
µνfµν , v2 = θαβTrgµνfαµfβν , v3 = θαβTrgαµfβνf

µν ,

v4 = θαβTrgµνfαβf
µν , v5 = θ aβTrūγµfµβDαλ, v6 = θαβTrūγµfαβDµλ,

v7 = θαβTrūγµDµfαβλ, v8 = θαβTrūγαfβµD
µλ, v9 = θαβTrūγαD

µfβµλ,

v10 = θαβTrūγαβ
µDνfµνλ, v11 = θαβTrūγαβ

µfµνD
νλ, v12 = θαβTrūγα

ρσDβfρσλ,

(3.3)
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v13 = θαβTrūγα
ρσfρσDβλ, v14 = θαβTrūγα

ρσfβσDρλ, v15 = θαβTrλ̄γµDαλgµβ ,

v16 = θαβTrλ̄γµDµλgαβ , v17 = θαβTrλ̄γαD
µλgβµ, v18 = θαβTrλ̄γαβ

µλ∂νgµν ,

v19 = θαβTrλ̄γα
ρσλ∂βgρσ.

In the formulae above, “Tr” denotes the trace over the SU(N) generators. The list of

terms spans modulo total derivatives all the possible gauge invariant terms of order hθµν

with the appropriate dimensions with zero or two Majorana fields. Again, the Majorana

properties (A.3) and (A.4) have been used, so that any term with two Majorana fermions

not present above can be expressed as a linear combination of the ti, ui and vi, again modulo

total derivatives. In the case of terms with four Majorana fermions, t15 and t16 do not span

all the allowed contributions, but the missing ones will play no role in our calculations and

we will safely ignore them.

The contributions to the previous list of terms with a minimum number of fields are

independent of each other, which, as explained before, allows to fix the coefficients of

the expansion of the divergent part of the effective action, Γdiv, in terms of the ti, ui, vi

by computing only the 1PI diagrams with the least possible number of fields. Let us

identify the diagrams that need to be computed, using the notation in eq. (2.12) for the

1PI background Green functions.

At order h0, the possible gauge invariant terms are Trfµνf
µν and Trλ̄ /Dλ. Thus,

using the notation of eq. (2.12) only the diagrams contributing to Γ̃(2,0) -with two external

background gauge field legs- and Γ̃(0,1) -with two external quantum fermionic legs- need to

be computed. At order h, we have, schematically, the following types of terms:

• Terms of the type Trθfff,Trθgff, θggg, which are spanned by t1, t2, u1, u2 and

v1 − v4 in eqs. (3.1), (3.2) and (3.3), whose contributions with three gauge fields are

independent. Thus it suffices to compute diagrams with three external gauge fields,

contributing to Γ̃(3,0).

• Terms of the type Trθλ̄D3λ, θū∂3u, which are spanned by t3, t4 and u3, u4 in eqs. (3.1)

and (3.2). They involve at least two fermionic fields, so that their coefficients in the

expansion of Γdiv can be fixed by computing Γ̃(0,1), which arises from diagrams with

two fermionic legs.

• Terms of the type -neglecting ordering- Trθλ̄Dfλ,Trθλ̄fDλ, θū∂gu, θūg∂u,TrūDfλ,

TrūfDλ, Trλ̄Dλg,Trλ̄λ∂g, which are spanned by t5 − t14, u5 − u9, v5 − v19 in

eqs. (3.1), (3.2) and (3.3). Their contributions with one gauge field and two Majorana

fields are again independent, so that it suffices to compute the diagrams contributing

to Γ̃(1,1), i.e., with one background gauge field leg and two quantum fermionic legs.

• Terms of the type Trθλ̄λλ̄λ, such as t15, t16 in eq. (3.1). Though t15, t16 do not

span all possibilities, it is clear that the computation of Γ̃(0,2) (diagrams with four

external fermionic legs) will completely determine the corresponding contribution to

the effective action Γ.
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Figure 1. Diagrams contributing to Γ̃(3,0) at order h.

Summarising, at order h the only diagrams that have to be computed are those contribut-

ing to the 1PI Green functions Γ̃(3,0), Γ̃(0,1), Γ̃(1,1) and Γ̃(0,2). We proceed in the next

sections, using dimensional regularisation at D = 4 − 2ǫ dimensions, with the Feynman

rules displayed in appendix B. The calculations are quite involved and were done with the

symbolic manipulation software Mathematica.

3.1 Commutative limit

Here we quote the known commutative result for the dimensionally regularised divergent

part of the effective action:

Γord,div
[U(N)] =

∫

dDx− 3g2N

16π2ǫ
Tr

[

− 1

2g2
fµνf

µν

]

+

∫

dDx
N

16π2ǫ
[iTrλ̄ /Dλ]. (3.4)

For simplicity, we suppressed the “̂” symbols with which we denoted the classical fields in

section 2; we will keep doing so in the rest of the paper. Note that the divergent part only

involves the SU(N) fields a, λ, since the U(1) sector is free in the commutative limit. In

fact, since the U(1) sector is free, in the SU(N) case the result is identical,

Γord,div
[SU(N)] = Γord,div

[U(N)] . (3.5)

3.2 Noncommutative contributions to Γ̃(3,0)

The diagrams that contribute are shown in figure 1. Note that, though we did not provide

in appendix B the Feynman rule for the vertex appearing in the first diagram, this diagram

is directly zero since it involves an integral of the type

∫

dDl

∏

i lµi

(l2)k
, (3.6)

which vanishes in dimensional regularisation.

The results for the diagrams are too lengthy to be displayed here individually. We will

quote the final expression for the contribution to the divergent part of the effective action
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Figure 2. Diagrams contributing to Γ̃(0,1) at order h.

in position space:

iΓ̃
(3,0),NC,div

[U(N)]
µ1, µ2, µ3

A1, A2, A3

aA1

µ1
aA2

µ2
aA3

µ3
=

3g2Nh

16π2ǫ

[

1

4g2
t1 −

1

g2
t2

]
∣

∣

∣

∣

aaa

(3.7)

+
2g2Nh

16π2ǫ

[

1

4g2
√

2N
(v1 + 2v4)−

1

g2
√

2N
(v2 + 2v3)

]
∣

∣

∣

∣

baa

+O(h2),

where “|aaa” and |baa” denote the contributions with lowest number of fields, i.e., three

SU(N) gauge fields and one U(1) and two SU(N) gauge fields, respectively. Recall that

the ti, ui, vi are the gauge invariant terms defined in eqs. (3.1), (3.2) and (3.3). To get the

SU(N) result, the external Lie algebra indices of the diagrams have to be set to SU(N)

indices, and any U(1) contributions to internal contractions have to be eliminated. It turns

out that all diagrams involve contractions of the type appearing in eq. (A.1) of appendix

A, which, when setting the uncontracted indices to SU(N) indices, do not involve any

contributions from internal U(1) indices. This is equivalent to saying that the U(1) fields

do not run in the loops when the external fields are the aa
µ. From this we conclude that

the SU(N) result is obtained from eq. (3.7) by simply setting to zero the U(1) fields:

iΓ̃
(3,0),NC,div

[SU(N)]
µ1, µ2, µ3

a1, a2, a3

aa1

µ1
aa2

µ2
aa3

µ3
=

3g2Nh

16π2ǫ

[

1

4g2
t1 −

1

g2
t2

]
∣

∣

∣

∣

aaa

+O(h2). (3.8)

3.3 Noncommutative contributions to Γ̃(0,1)

The diagrams contributing to the Γ̃(0,1) Green function at order θ are shown in figure 2.

The first diagram is zero as it involves again an integral of the type shown in eq. (3.6). For

external colour indices A, B, it is easily seen that the rest of the diagrams are zero since they

are proportional to either fACDdBCD = 0 or fBCDdACD = 0. To get the SU(N) result one

has to set the external indices to a, b and drop any U(1) contributions in the contractions

of the internal indices. However, since f bCDdaCD = f bcddacd, no U(1) contributions must

be eliminated, and the same argument as before applies. Therefore,

Γ̃
(0,1),NC,div
[U(N)]

= Γ̃
(0,1),NC,div
[SU(N)]

= O(h2). (3.9)

3.4 Noncommutative contributions to Γ̃(1,1)

The diagrams contributing to the Γ̃(1,1) Green function at order θ are shown in figure 3.

Again, we will write down the final result of the lengthy computation:

i

2
Γ̃

(1,1),NC,div

[U(N)]
i, j, µ

A, B, C

l̄Ai lBj aC
µ =− iNh

16π2ǫ

[

1

4
t6 −

1

2
t7 −

1

8
t8 −

1

16
t9

]∣

∣

∣

∣

aλ̄λ
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Figure 3. Diagrams contributing to Γ̃(1,1) at order h.

+
iNh

16π2ǫ

(

1√
2N

)[

v5 −
3

2
v6 + 2v8 −

1

4
v10 −

1

2
v12

]
∣

∣

∣

∣

aūλ

(3.10)

+
iNh

16π2ǫ

(

1√
2N

)[

− v15 +
1

2
v16 +

3

4
v18 +

3

4
v19

]∣

∣

∣

∣

bλ̄λ

+O(h2).

To get the SU(N) result, using the same arguments as in the previous subsection it suffices

to set the U(1) fields to zero:

i

2
Γ̃

(1,1),NC,div

[SU(N)]
i, j, µ

a, b, c

λ̄a
i λ

b
ja

c
µ =− iNh

16π2ǫ

[

1

4
t6 −

1

2
t7 −

1

8
t8 −

1

16
t9

]
∣

∣

∣

∣

aλ̄λ

+O(h2). (3.11)

3.5 Noncommutative contributions to Γ̃(0,2)

The diagrams that contribute are shown in figure 4; it is easily seen that the box diagrams

are finite since, though they would appear to be logarithmically divergent, one of the mo-

menta in the noncommutative vertex is always external, as can be seen from the Feynman

rule in appendix B. The final result is as follows:

i

16
Γ̃

(0,2),NC,div

[U(N)]
i, j, k, l

A, B, C, D

l̄Ai l̄Ck lBj lDl = − 3iNh

512π2ǫ
t16 +O(h2). (3.12)

Again, for external SU(N) fields no U(1) fields run in the loops, and the SU(N) result is

identical.

i

16
Γ̃

(0,2),NC,div

[SU(N)]
i, j, k, l

a, b, c, d

λ̄a
i λ̄

c
kλ

b
jλ

d
l = − 3iNh

512π2ǫ
t16 +O(h2). (3.13)
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C1

Ck, k = 1 . . . 16
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q

r

s

j,B

i,A k,C

l,D

+ three perm. of momenta and indices

Figure 4. Diagrams contributing to Γ̃(0,2) at order h.

3.6 Final expression

From the previous discussions and the notation employed in the results of the 1PI Green

functions in eqs. (3.7), (3.9), (3.10) and (3.12), which are expressed as the contributions

with the lowest number of fields of linear combinations of the gauge invariant terms

ti, ui, vi of eqs. (3.1), (3.2) and (3.3), it is clear that the final result for the first-order

noncommutative correction to the divergent part of the one-loop effective action is

simply given by the integral of a sum of the ti, ui, vi with the same coefficients as in

eqs. (3.9), (3.7), (3.10) and (3.12):

Γdiv,NC
[U(N)] =− h

∫

dDx

(

3g2N

16π2ǫ

[

1

4g2
t1−

1

g2
t2

]

+
2g2N

16π2ǫ

[

1

4g2
√

2N
(v1+2v4)−

1

g2
√

2N
(v2+2v3)

]

− iN

16π2ǫ

[

1

4
t6−

1

2
t7−

1

8
t8−

1

16
t9

]

+
iN

16π2ǫ

(

1√
2N

)[

v5−
3

2
v6+2v8−

1

4
v10−

1

2
v12

− v15 +
1

2
v16 +

3

4
v18 +

3

4
v19

]

− 3iN

512π2ǫ
t16

)

+O(h2). (3.14)

Similarly, the SU(N) result obtained from the expressions in eqs. (3.8), (3.9), (3.11)

and (3.13) is

Γdiv,NC
[SU(N)] =− h

∫

dDx

(

3g2N

16π2ǫ

[

1

4g2
t1−

1

g2
t2

]

− iN

16π2ǫ

[

1

4
t6−

1

2
t7−

1

8
t8−

1

16
t9

]

− 3iN

512π2ǫ
t16

)

+O(h2). (3.15)

Equivalently, substituting the expressions in eqs. (3.1), (3.2) and (3.3), and adding the

commutative contribution of eq. (3.4), we arrive to the following formula for the one-loop
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divergent part of the effective action at first order in the noncommutative parameters

Γdiv
[U(N)] = −

∫

dDx

(

3g2N

16π2ǫ
Tr

[

− 1

2g2
fµνf

µν +
h

4g2
θµνfαβfµνf

µν − h

g2
θαβfαµfβµf

µν

]

− N

16π2ǫ
[iTrλ̄ /Dλ]

+
2g2Nh

16π2ǫ
Tr

[

1

4g2
√

2N
θαβ(gαβf

µνfµν +2gµνfαβf
µν)− 1

g2
√

2N
θαβ(gµνfαµfβν+2gαµfβµf

µν)

]

− Nh

16π2ǫ
Tr

[

i

4
θαβλ̄γµ{fαβ ,Dµλ} −

i

2
θαβλ̄γα{fβµ,D

µλ} − i

8
θαβλ̄γαβ

µ{Dνfµν , λ}

− i

16
θαβλ̄γα

ρσ{Dβfρσ, λ}
]

+
Nh

16π2ǫ

(

1√
2N

)

Tr

[

iθαβūγµfµβDαλ−
3

2
iθαβūγµfαβDµλ

+ 2iθαβūγαfβµD
µλ− i

4
θαβūγαβ

µDνfµνλ−
i

2
θαβūγα

ρσDβfρσλ

]

(3.16)

+
Nh

16π2ǫ

(

1√
2N

)

Tr

[

− iθαβλ̄γµDαλgµβ +
i

2
θαβλ̄γµDµλgαβ +

3i

4
θαβλ̄γαβ

µλ∂νgµν

+
3i

4
θαβλ̄γα

ρσλ∂βgρσ

]

− 3iNh

512π2ǫ
θαβTrλ̄i(γ

µ)ij [[λ̄k,(γµαβλ)k],λj ]

)

+O(h2).

The corresponding expression in the SU(N) case is

Γdiv
[SU(N)] = −

∫

dDx

(

3g2N

16π2ǫ
Tr

[

− 1

2g2
fµνf

µν +
h

4g2
θµνfαβfµνf

µν − h

g2
θαβfαµfβµf

µν

]

− N

16π2ǫ
[iTrλ̄ /Dλ]

− Nh

16π2ǫ
Tr

[

i

4
θαβλ̄γµ{fαβ,Dµλ} −

i

2
θαβλ̄γα{fβµ,D

µλ} − i

8
θαβλ̄γαβ

µ{Dνfµν , λ}

− i

16
θαβλ̄γα

ρσ{Dβfρσ, λ}
]

− 3iNh

512π2ǫ
θαβTrλ̄i(γ

µ)ij [[λ̄k,(γµαβλ)k],λj ]

)

+O(h2). (3.17)

It is worth noting that, for N = 2, all the terms with SU(N) fields whose traces yield

factors dabc = 2TrT a{T b, T c} in eqs. (3.16) and eq. (3.17) vanish. This means that all

terms involving only SU(N) fields vanish; in the U(2) case, we are only left with SU(2)-

U(1) mixed terms, while for the SU(2) theory the noncommutative divergences disappear.

This fact is independent of the representation considered since, for a representation R of

SU(N), TrRT
a{T b, T c} ∝ TrFT a{T b, T c}.

In the U(1) case, it is also clear from eqs. (3.16) and eq. (3.17) that, as in the SU(2)

theory, the divergent part of the effective action reduces to its commutative counterpart.

4 Analysing renormalisability

In this section we will analyse whether the divergences in the effective actions, given in

eqs. (3.16) and (3.17), can be subtracted from appropriate multiplicative renormalisations

of fields and parameters and infinite shifts on the Seiberg-Witten map ambiguities S, L
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-see eq. (2.2). We will use the minimal subtraction scheme. The counterterms in the action

that cancel the divergences of the effective action are trivially given by
∫

dDxLct = −
∫

dDxΓdiv.

Were the theory to be renormalisable, these counterterms would arise from multiplica-

tive renormalisation and from ambiguities of the SW maps, which, as will be argued, are

equivalent to field redefinitions. We define the multiplicative renormalisation as

aµ = Z1/2
a aR

µ , bµ = Z
1/2
b bRµ , λ = Z

1/2
λ λR, u = Z1/2

u uR, g = Zgg
R, h = Zhh

R, (4.1)

with Zi = 1 + δZi. It is easily seen that gauge invariance forces

δZa = 0.

On the other hand, the SW map ambiguities at order h, Sµ and L, are given by terms

transforming in the adjoint representation of the gauge group, with the appropriate mass

dimensions and index structure, involving a contraction with θαβ; under a U(N) gauge

transformation of the fields with gauge parameter c = caT a + 1√
2N
C, they transform as

sSµ = i[caT a,Sµ], sL = i[caT a,L].

We restrict ourselves to ambiguities that respect the parity transformation properties of

the fields; doing so is justified since considering additional types of field redefinitions would

yield terms in the modified action involving an odd number of ǫµνρσ tensors, which do not

appear in the divergent parts of the effective actions given in eqs. (3.16) and (3.17) and

thus need not be considered when checking renormalisablity. The most general solution we

found satisfying the specified requirements is of the form

Sµ = Sµ + Tµ1,L = L+M1, (4.2)

such that

Sµ =y1θ
αβDµfαβ + y2θµ

αDνfνα + y3θµ
α{λ̄i, (γαλ)i}+ iy4θ

αβ[λ̄i, (γµαβλ)i] + iy5θµ
αūγαλ

+ y6θ
ρσūγµρσλ, yk ∈ IR,

L=k1θ
αβ{fαβ , λ}+k2θ

αβD2λ+k3θ
αβγα

µ[fβµ, λ]+k4θ
αβγα

µ{fβµ, λ}+k5θ
αβγα

µ{Dµ,Dβ}λ
+ k6θ̃

αβγ5{fαβ, λ}+ k7θ̃
αβγ5[fαβ, λ] + k8θ

αβgαβλ+ k9θ
αβγα

µgβµλ+ k10θ̃
αβγ5gαβλ

+ k11θ
αβfαβu+ k12θ

αβγα
µfβµu+ k13θ̃

αβγ5fαβu, ki ∈ C, (4.3)

Tµ =z1θ
αβ∂µgαβ + z2θµ

α∂νgνα + iz3θ
αβūγµαβu+ iz4Trθαβ[λ̄i, (γµαβλ)i], zk ∈ IR,

M=l1θ
αβgαβu+l2θ

αβ∂2u+l3θ
αβγα

µgβµu+l4θ
αβγα

µ∂µ∂βu+l5θ̃
αβγ5gαβu+l6Trθαβ{fαβ, λ}

+ l7Trθαβγα
µ{fβµ, λ} + l8Trθ̃αβγ5{fαβ, λ}, li ∈ C,

where θ̃αβ = 1
2ǫ

αβρσθρσ. In the U(N) case, since the enveloping algebra coincides with the

Lie algebra, the previous ambiguities are equivalent to field redefinitions of bµ, aµ, λ, u. The

ambiguities in the SU(N) case are obtained by setting bµ = u = 0. Since in principle there
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still remain contributions along the identity operator after setting bµ = u = 0 in eq. (4.3),

it would seem that the SU(N) ambiguities are not equivalent to field redefinitions, which

would invalidate our arguments concerning the possibility of setting the ambiguities to zero

at tree-level without losing generality when dealing with the renormalisability of the theory.

However, in the SU(N) case it is easily seen that the contributions to the ambiguities along

the identity, coming from the terms of eq. (4.3) proportional to y4, k1, k4, k6, z4, l6, l7, l8,

do not yield modifications of the action at order h, so that these contributions can be

ignored and the ambiguities can be thought as Lie algebra valued and thus equivalent to

field redefinitions. Note that the field redefinitions proportional to y4, k1, k4, k6 not only

yield contributions along the identity but also on the Lie Algebra, and thus still have to

be taken into account.

4.1 Commutative renormalisation

The U(N) and SU(N) –N > 1– theories at order h = 0 are multiplicatively renormalisable;

the divergences appearing in eq. (3.4) -see also eq. (3.5)- can be absorbed by the following

values of the renormalisation constants in eq. (4.1):

δZa = 0, δZg = − 3g2N

32π2ǫ
, δZb = − 3g2N

16π2ǫ
, δZλ = − g

2N

4π2ǫ
, δZu = − 3g2N

16π2ǫ
. (4.4)

4.2 Renormalisation of the noncommutative bosonic sector

Starting with the U(N) case, N > 1, let us consider the order h noncommutative divergences

only involving gauge fields in eq. (3.16). A key issue is that the ambiguities in the SW

map given in eq. (4.3), when introduced in the action by means of eqs. (4.2), (4.3), (2.2)

and (2.1), do not generate any purely bosonic terms. Thus the purely bosonic divergences

can only be renormalised, if at all, by means of multiplicative renormalisations. In terms

of the basis of gauge invariant terms given in eqs. (3.1), (3.2) and (3.3), the tree-level

noncommutative contribution to the bosonic part of the action is

Stree,NC
[U(N)]bos =

∫

dDx
( h

4g2
t1 −

h

g2
t2 +

h

8g2
√

2N
u1 −

h

2g2
√

2N
u2 +

h

4g2
√

2N
(v1 + 2v4)

− h

g2
√

2N
(v2 + 2v3)

)

+O(h2), (4.5)

so that the counterterm action originated by the multiplicative renormalisations of eq. (4.1)

would be, keeping in mind δZa = 0 and suppressing the “R” superindices for simplicity:

Sct,NC
[U(N)]bos =

∫

dDx

(

(−2δZg + δZh)

(

h

4g2
t1 −

h

g2
t2

)

+

(

− 2δZg + δZh +
3

2
δZb

)(

h

8g2
√

2N
u1 −

h

2g2
√

2N
u2

)

+

(

− 2δZg+δZh+
1

2
δZb

)(

h

4g2
√

2N
(v1+2v4)−

h

g2
√

2N
(v2+2v3)

))

+O(h2),
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which should be made equivalent with minus the bosonic part of the divergent part of the

effective action in eq. (3.14)

Γdiv,NC
[U(N)]bos =−

∫

dDx

(

3g2N

16π2ǫ

[

h

4g2
t1−

h

g2
t2

]

+
2g2N

16π2ǫ

[

h

4g2
√

2N
(v1+2v4)−

h

g2
√

2N
(v2+2v3)

]

+O(h2). (4.6)

For N ≥ 3, for which the terms t1 and t2 are nonzero, this forces the three following

identities,

3g2N

16π2ǫ
= −2δZg + δZh,

0 = −2δZg + δZh +
3

2
δZb, (4.7)

− 2g2N

16π2ǫ
= −2δZg + δZh +

1

2
δZb.

Using the commutative results in eq. (4.4), the first equation implies

δZh = 0,

as has been obtained for a number of other noncommutative theories, but then the second

and third identities in eq. (4.7) are not satisfied. In the N = 2 case, only the last two

identities are relevant, since t1 = t2 = 0; again, they are incompatible with the O(h0)

results of eq. (4.4).

From this we arrive to the first conclusions of our paper: the U(N) theory is not

renormalisable, for N > 1. In principle we have derived this only for our choice of gauge-

fixing; to extend the result for arbitrary gauge-fixing, we have to consider the on-shell

divergences, which are independent of the gauge-fixing. The equations of motion are of the

form

(Dµf
µν) =

1

2
{λ̄i, γ

ν
ijλj}+O(h), ∂µg

µν = O(h), /Du = O(h), (4.8)

( /Dλ)a =
h

2
θαβTrT aγµ{Dµλ, fαβ}+ hθαβTrT aγµ{Dβλ, fµα}+O(h2),

where the details of the O(h) part in the equations in the first line of (4.8) will not be

relevant to our purposes. Since the bosonic divergences of eq. (4.6) –see eqs. (3.1) and (3.3)–

do not involve covariant derivatives of field strenghts, it is easy to see that the on-shell

conditions of eq. (4.8) cannot be used to relate the bosonic divergences in eq. (4.6) among

themselves or with the fermionic divergences. Thus the on-shell bosonic divergences have

the same form as in eq. (4.6) and the same conclusions about nonrenormalisability apply.

However, in the large N limit, N →∞ while keeping the ’t Hooft coupling g2N finite,

both the tree-level contributions in eq. (4.5) and the problematic divergences in eq. (4.6)

associated with the ui terms are subleading, so that the second and third identities in

eq. (4.7) need not be considered, and therefore the gauge sector is renormalisable in this

limit with δZh = 0, in keeping with the expectations raised by the quantum behaviour of

the SW duals of the NC U(N) theories in the enveloping algebra approach.
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In the SU(N) case, N ≥ 3, we only have the divergences coming from the ti terms,

which are multiplicatively renormalisable with δZh = 0; thus, the SU(N) gauge sector

is renormalisable, as has been obtained already for other NC theories in the enveloping

algebra approach with different matter content [20–25].

It remains to examine the renormalisability of the gaugino sector. Given the previous

conclusions, it suffices to study only the large N limit of U(N) or the SU(N) theory for

N ≥ 3, since the U(N) theory fails to be renormalisable for finite N > 1.

4.3 Renormalisation of the noncommutative gaugino sector

In the large N limit, given the decomposition in eq. (2.3), the tree-level interactions in-

volving U(1) fields are subleading with respect to those of SU(N) fields, so that at leading

order in N the U(1) fields are free. This is also reflected at the quantum level, since the

divergences involving U(1) fields in the effective action in eq. (3.16) are subleading. Thus,

for large N the U(1) fields can be neglected, and the problem of renormalisability is the

same as for the SU(N) theory. The tree level part of the SU(N) action involving gaugino

fields and taking into account the SW map ambiguities of eq. (4.3) restricted to the SU(N)

case is given, for N ≥ 3 and in the basis of gauge invariant terms of eq. (3.1), by

Stree,NC
[SU(N)]gaugino

=
h

g2

∫

dDx
16

∑

i=3

Citi +O(h2),

C3 = −4iRek5−4iRek2, C4 = −2Imk2,

C5 =
i

2
−2iRek4, C6 = − i

4
+ 2iRek1,

C7 = −2iRek4, C8 = −2iy4 + Rek6 + iImk6,

C9 =− i
2
Rek4 + Rek6 + iImk6, C10 =

1

2
(2y1 + Imk3− Rek5),

C11 =
1

2
(4y3− 2y2 + 2Imk3−2Rek5), C12 = 2Rek2 + 2iImk2 + 2Rek6 + 2Rek7,

C13 = −2Rek5 + 2Rek6 + 2Rek7, C14 = 2Imk3 − 2Rek5,

C15 = y3, C16 = iy4.

The previous formulae follow from eq. (2.1), the SW map in eq. (2.2) for aµ = aµ and

the ambiguities of eq. (4.3) for Tµ = M = bµ = u = 0. The Dirac algebra identities

in eq. (A.2) were extensively used. The counterterm Lagrangian generated by the mul-

tiplicative renormalisations of fields and parameters of eq. (4.1) and by infinite shifts of

the ambiguity parameters yi = yR
i + δyR

i , ki = kR
i + δkR

i is given, for yR
i = kR

i = 0 -recall

that we computed the divergences in the effective action for zero values of the SW map

ambiguities-, by

Sct,NC
[SU(N)]gaugino =

h

g2

∫

dDx
16
∑

i=3

(δCi)ti +O(h2), (4.9)

δC3 = −4iδRek5 − 4iδRek2, δC4 = −2δImk2,
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δC5 =
i

2
(−2δZg + δZλ)− 2iδRek4, δC6 = − i

4
(−2δZg + δZλ) + 2iδRek1,

δC7 = −2iδRek4, δC8 = −2iδy4 + δRek6 + iδImk6,

δC9 = − i
2
δRek4 + δRek6 + iδImk6, δC10 =

1

2
(2δy1 + δImk3 − δRek5),

δC11 =
1

2
(4δy3 − 2δy2 + 2δImk3 − 2δRek5), δC12 = 2δRek2+2iδImk2+2δRek6+2δRek7,

δC13 = −2δRek5 + 2δRek6 + 2δRek7, δC14 = 2δImk3 − 2δRek5,

δC15 = δy3, δC16 = iδy4,

where the “R” superindices have been suppressed for simplicity and the result δZh = 0 of

the previous subsection was used.

For the theory to be renormalisable, the previous counterterm action has to be matched

with minus the divergent part of the effective action in eqs. (3.15) and (3.17) involving

gaugino fields. This contribution involving fermion fields, expressed in the basis of gauge

invariant terms of eq. (3.1), is

Γdiv,NC
gaugino,[SU(N)] =

∫

dDx
( iNh

16π2ǫ

[1

4
t6 −

1

2
t7 −

1

8
t8 −

1

16
t9

]

+
3iNh

512π2ǫ
t16

)

+O(h2). (4.10)

Matching eqs. (4.9) and (4.10), we get the following system of equations:

t3 : δRek5 + δRek2 = 0, t4 : δImk2 = 0,

t5 :
i

2
(−2δZg + δZλ)− 2iδRek4 = 0, t6 :

i

4
(−2δZg + δZλ)− 2iδRek1 =

iNg2

64π2ǫ
,

t7 : −2iδRek4 =
iNg2

32π2ǫ
, t8 : −2iδy4 + δRek6 + iδImk6 =

iNg2

128π2ǫ
,

t9 : − i
2
δRek4 + δRek6 + iδImk6 =

iNg2

256π2ǫ
, t10 : 2δy1 + δImk3 − δRek5 = 0,

t11 : 4δy3 − 2δy2 + 2δImk3 − 2δRek5 = 0, t12 : δRek2 + iδImk2 + δRek6 + δRek7 = 0,

t13 : −δRek5 + δRek6 + δRek7 = 0, t14 : δImk3 − δRek5 = 0,

t15 : δy3 = 0, t16 : iδy4 = − 3iNg2

512π2ǫ
. (4.11)

Projecting into real and imaginary parts, there are 17 real equations for 13 real vari-

ables,

δy1, δy2, δy3, δy4, δRek1, δRek2, δImk2, δImk3, δRek4, δRek5, δRek6, δImk6, δRek7.

Remarkably, the equations are not independent and there is a one-paramter family of

solutions,

δy1 = δy2 = δy3 = δImk2 = δRek6 = 0,

δy4 = − 3g2N

512π2ǫ
,

δImk3 = δRek7 = −δRek2 = δRek5,
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δRek1 = δRek4 = − g2N

64π2ǫ
,

δImk6 = − Ng2

256π2ǫ
.

This shows that, at one-loop and order θ, the U(N) theory in the large N limit and

the SU(N) theory are renormalisable.

5 Conclusions

In this paper we have calculated the O(θ) divergent part of the background field effective

action for the classical dual under the Seiberg-Witten map of noncommutative N = 1

U(N) super Yang-Mills, as well as for the SU(N) theory that results from suppressing the

U(1) degrees of freedom in the former U(N) theory. Our results can be summarised as

follows: the quantisation of the classical dual under the Seiberg-Witten map of N = 1

U(N), N > 1, super Yang-Mills yields an U(N) supersymmetric ordinary quantum theory

that is not renormalisable –and neither is its gauge sector– for finite values of N . In the

large N limit, however, the U(N) theory remarkably becomes renormalisable. On the other

hand, the SU(N) theory for arbitrary N > 2 also turns out to be renormalisable.

That both –i.e., the standard, quantised in terms of noncommuative fields, and the

θ-expanded, defined by means of the Seiberg-Witten map– large N supersymmetric U(N)

theories are one-loop renormalisable and have the same running coupling constant hints

at the fact that the classical duality between noncommutative theories established by the

Seiberg-Witten map may survive at the quantum level: as was mentioned in the intro-

duction, the noncommutative U(N) super Yang-Mills theory, at one-loop and large N, is

renormalisable and has a smooth θµν → 0 limit, and this behaviour is reproduced in the dual

theory formulated by means of the Seiberg-Witten map. This is in agreement with previ-

ous studies regarding the survival at the quantum level of the Seiberg-Witten map duality,

although they focused on UV finite theories such as noncommutative Chern-Simons [28].

On the other hand, the SU(N) result represents the first case in the literature in which

a noncommutative theory in the enveloping algebra approach involving fermion fields turns

out to be one-loop renormalisable at order θ. This could be attributed to the consideration

of Majorana fermions and a noncommutative covariant derivative involving a star product

commutator, or perhaps, more likely, to the effects surviving in the large N limit of the su-

persymmetry present in the parent U(N) theory. Though the role of supersymmetry in the

SU(N) case asks for futher analysis, the fact that the fermionic divergences can be renor-

malised, in contrast to the cases previously studied in the literature –in which the bosonic

sector was found to be renormalisable, but not so the fermionic sector– suggests that a

symmetry relating fermions and bosons may actually be present, making the corresponding

divergences not independent. Our result encourages the study of noncommutative models

sharing features with the SU(N) theories studied here, with either Majorana fermions or

supersymmetry in terms of noncommutative fields; it raises the hope of constructing renor-

malisable noncommutative gauge theories in the enveloping algebra approach with matter
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fields. Also, the effect on the ordinary fields of the supersymmetry of the noncommutative

fields in the SU(N) case is still not understood and needs further investigation.
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A Lie algebra, Dirac algebra, Majorana spinors

Following the notation of ref. [38], we denote the Lie algebra generators of U(N) in the

fundamental representation as TA = {T 0, T a}, a = 1, . . . , N2 − 1, with T 0 = 1√
2N

and T a

the standard SU(N) generators. The generators satisfy

[TA, TB ] = ifABCTC , {TA, TB} = dABCTC ,

where fABC are totally antisymmetric, with fabc having their usual SU(N) values and

f0BC = 0, whereas dABC are totally symmetric, dabc having their usual SU(N) values and

d0BC =
√

2/NδBC , d00c = 0, d000 =
√

2/N. We will make use of the following identities:

fACDfBCD = NcAδ
AB ,

fDAEfEBF fFCD = −N
2
fABC , (A.1)

fDAEfEBFdFCD = −N
2
dABCcAcBdC ,

cA = 1− δA,0, dA = 2− cA.

Concerning Dirac γ matrices, satisfying {γµ, γn} = 2ηµν , we use a basis of opera-

tors in the space of spinors constructed from antisymmetrised products of these matrices:

{γµ, γµν , γµνρ, γ5}, with the following definitions

γµν =
1

2
(γµγν − γνγµ), γµνρ =

1

6
(γµγνγρ+γνγργµ+γργµγν−γµγργν−γνγµγρ−γργνγµ),

γ5 =− i

4!
ǫµνρσγ

µγνγργσ.

In order to express products of γ matrices in terms of the previous basis, the following

identities can be used:

γµγν =ηµν + γµν ,

γµγνγρ =ηνργµ − ηµργν + ηµνγρ + γµνρ,

γµγνγλγρ =ηµνηλρ+ηµρηνλ−ηµληνρ+ηµνγλρ+ηµργνλ−ηµλγνρ+ηνλγµρ−ηνργµλ+ηλργµν

− iǫµνλργ5. (A.2)
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Majorana spinors are self-conjugate, satisfying

λ = Cλ̄T , λ̄ = −λTC−1 (A.3)

for a charge conjugation matrix C such that

C† = C−1, CT = −C, CΓT
i C

−1 = ηiΓi, ηi =

{

+1, Γi = II, γ5, γ
µνρ

−1, Γi = γµ, γµν .
(A.4)

B Feynman rules for α = 1, S
tree

µ
= L

tree = 0

The background field legs are denoted by an encircled ”b”. We define the Feyn-

man rules without symmetrising over these background field legs, which is consistent

with the definition of the expansion of the effective action in terms of diagrams

provided in eq. (2.12). Since we are doing one-loop calculations, only vertices with

two quantum gauge fields contribute; vertices with one quantum gauge field are

ignored since they do not contribute to 1PI diagrams. Since we are dealing with

self-conjugate Majorana fermions, the vertices with Majorana fermions have to be

symmetrised with respect to the conjugation of the interaction in each fermion pair,

using (A.4) [39]. The Feynman rules used in our computations are then the following:

p

µ,A ν,B ↔ −ig
2δABηµν

p2 + iǫ

p
i,A j,B↔ ig2(/p)ijδ

AB

p2 + iǫ

p
A B ↔ iδAB

p2 + iǫ

k1

k2

k3

µ,A

ν,B

ρ,C

↔ 1

g2
fABC [ηµρ(k1 − k3 − k2)

ν + ηνρ(k3 − k2)
µ

+ ηµν(k2 − k1 + k3)
ρ]

pq

k

µ,C

i,A j,B

↔ 1

g2
(γµ)ijf

ABC

µ,A ν,B

λ,C ρ,D

↔ − i

2g2
[fABF fFCD(ηµληνρ − ηµρηνλ + ηµνηλρ)

fADFfFBC(ηµνηλρ − ηµληνρ − ηµρηνλ)]

fACFfFBD(ηµνηλρ − ηµρηνλ)]
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k1

k2

k3

µ,A

ν,B

ρ,C

↔ 1

4g2
θαβd

ABC [kα
1 k2 · k3η

µβηνρ − kα
1 k

ρ
2k

ν
3η

µβ

− 2(kα
1 k

β
2 k

µ
3 η

νρ−kα
1 k

ρ
2k

µ
3 η

νβ−k1 · k3k
β
2 η

νρηµα (B.1)

+k1 · k3k
ρ
2η

µαηνβ)]+(permutations of all legs)

pq

k

µ,C

i,A j,B

↔ 1

4g2
θαβd

ABC(γρ)ij [−ηµαqρpβ + 2ηρµqαpβ + ηµαpρqβ

+ ηµαpρqβ − ηµαqρpβ]

µ,A ν,B

λ,C ρ,D

↔ −i
16g2

θαβf
ABFdCDF[k3 ·k4η

µαηνβηλρ−kρ
3k

λ
4 η

µαηνβ

+ 4kα
3 k

µ
4 η

νρηλβ − 4(kβ
3 k

ν
4η

µαηλρ − kβ
3 k

λ
4 η

µαηνρ

−kρ
3k

ν
4η

µαηλβ +k3 ·k4η
µαηνρηλβ)−2(kα

3 k
β
4 η

µληνρ

− kα
3 k

ν
4η

µληρβ − kµ
3 k

β
4 η

νρηλα + kµ
3 k

ν
4η

λαηρβ)]

+ (permutations of all legs)

p

q
k1

k2

i, A

j,B

µ,C

ν,D

↔

↔ −i
2g2

θαβ(γρ)ij

[

1

2
(dACEfBDE − dBCEfADE)[kα

1 (ηµβηρν − ηρµηνβ) + kρ
1η

µαηνβ ]

+
1

2
(dADEfBCE − dBDEfACE)[kα

2 (ηνβηρµ − ηρνηµβ) + kρ
2η

ναηµβ ]

+
1

2
dABEfCDE[(p + q)ρηµαηνβ + (p + q)α(ηµβηρν − ηνβηρµ)]

]
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